/}:"5 G"zgd’y
4_7@‘/5‘0‘"5

ASSOCIATIVE RETRIEVAL

by

DYNAMIC TRANSFORMS

" s vy v PARRMSIN Limenii v caaggosin
E{"vn“gsﬁ,g R i {ﬁ%?
il Ll ihed b bt

GPO PRICE S
Author:

CFSTI PRICE(S) $

Dr. Wilburn O. Clark

General Electric Company
0
Hard copy (HC) l 0 Huntsville, Alabama

&= Microfiche (MF) (SO ii

g ., N6k 33416

L | ; (PAGE4 f' (coé)

: ;g. C£~ kTZ{{JM&BER! (CATEGORY) .

Presented October 16, 1964, at:

Southeastern Regional Meeting of
Association for Computing Machinery
and Southeastern Simulation Council

Atlanta Americana Motor Hotel
Spring and Carnegie Way
Atlanta, Georgia




ASSOCTIATIVE RETRIEVAL BY DYNAMIC TRANSFORMS

In those problems where the number of retrieval operations from memory
exceeds the number of storage operations, extra time can be allowed for
storage if a sufficient time can be saved by associative retrieval. In
this paper a technique is described which uses dynamic transforms to
achieve associative retrieval.

The concept of simultaneously searching a set of stored information

items for a desired word is generally called either associative retrieval,
content addressed, or '"key-to-address transform." Several bibliographies
are available describing earlier work. To graphically demonstrate the
difference in techniques (let us) consider SLIDE 1. Consider the problem
of finding that an item is not in the list. To use sequential searching
requires N retrieval times. To use binary splitting requires logoN. But
to use dynamic transforms requires only "a" which is not a function of N.

Various portions of some problems can be formulated in terms of a set

of records, each of which may have several identifying items called "keys"

| associated with it, as illustrated in Figure 1.2.1. To facilitate record
manipulation the content of a record is represented by the address to

| the actual record where the information relevant to a particular applica-

" tion is stored.

The realization of an associative memory organization is either of the
special circuitry type usually called "content addressable memory" (CAM)
or of the interpretive program type which may be called "algorithmic
associative memory" (AAM). Only the AAM type can be realized on a
general purpose computer equipped with a standard "random access memory"
(RAM).

In AAM systems parallel comparisons with all keys stored is achieved by
using the same searching algorithm. The reference key is the input

data to a program segment which computes an address. The content of the
computed address directly (or indirectly) leads to all of the stored

records which are associated with the reference key. Thus, it is possible
for one key to refer to multiple records and.for one record to be identified
by many keys. The algorithm for transforming a key into an address is
called the "mapping algorithm."

Let us have the next Slide (Figure 1.2.2). To remove the constraint of
| ‘physical adjacency implied in dimension arrays each member of the list
F can contain the address, called a "link", to the next member. A list
constructed with its members linked together is called a "linked list."

The top member (i.e., the member with no predecessor) is the '"head" of the
‘ list and the address stored there is called the '"head link." The terminology
¥ suggests an analogy between a linked list and a log chain. Assuming one




-

list member could be stored per memory cell, the memory cells are linked
together like a chain. The relationship of the head link to the succeeding
cells in the chain is illustrated in Figure 1.2.2. Note that this is like
LISP. Although storage is very fast in a simple list system, retrieval
requires a maximum of N list step-and-compare operations, where N is the
number of keys stored. One unit of retrieval time is taken to be the time
needed to extract an element from a RAM, compare it with the reference
key, and perform any necessary list operations. By arranging the list

of kevs in ascending (or descending) order the storage is only slightly
compllcated but retrieval time is improved with binary spl1tt1ng to a
maximum of 1og2N retrieval times.

By introducing a transformation function as the central part of an
algorithmic associative memory, a more direct realization is possible.
Let us assume that the machine representation of each of the N keys is a
positive integer chosen from a larger set of positive integers 1 to M,
where M is the maximum size of any one key. Then if M is smaller than
the maximum available memory working area (IA), a one-to-one linear’
transformation can be made from the reference key to a memory location
in IA which contains a "tag" to identify which member of a simple list
contains the key. 1In practice M is much larger than the tag memory
space (IA) into which the keys are mapped.

First a nonlinear squeezing function is appiied to the key, generating

a new key called (key)', in order to reduce the magnitude as much as
possible without causing a loss of information. Next a linear transform
of the form.

IA(key=(tag width)*(key)' +(threshold of IA) (2.2.3) is performed, where
"tag width" is the number of characters used for a tag in variable word
length computers and "threshold of IA" is the lowest address in the IA
block.

In fixed word length machines the tag width is 1. Usually the threshold
of TA will be the first address above the program area. The significant
feature of this transform is the aspect whlch performs the nonlinear
squeezing.

Let us consider the requirements placed on the squeezing function to
make it most suited for associative memory applications. Since each of
the N keys to be stored associatively comes from a larger class of M
integers, the size of each key must in general be reduced to a smaller
value (key)' such that no two distinct keys have a common (key)'. This
process of reducing the key size unambiguously is called "squeezing",
and the set of keys thus uniquely transformed is said to be ''mapped."
Since the (key)' value is used in the above equation (2.2.3) to compute
an address, the maximum size of the tag memory required is proportional

to the largest (key'!'. Thus, minimizing the maximum (key)' conserves memory

space.

(continued)




3=

There are many possible functions which will squeeze a set of scattered
integers. Typical of these are number system conversions, weighted
column transforms, and modulus arithmetic.

In order for the system to be considered associative in the practiceal

sense of the word, the fetching time must be small. This implies that,

with a general purpose computer, the calculations necessary for squeezing
must be few and simple. The requirement to maintain unambiguity during
storage implies that the squeezing function must have at least one parameter
to adjust. The number of store operations required to store uniquely all

N input keys is taken as the "time" (t) for storage. The ratio of the
number of input keys to the tag memory required is defined as the tag
efficiency (v). Thus,

v = N/IA. (2.3.1)

The ratio of the storage time to the tag efficiency is taken as a rough
figure for the cost (c):

c=t/v. (2.3.2)

The transform which meets the above requirements and minimizes the cost (c¢)
is considered the best squeezing function.

Of those studied the most promising was the modulus arithmetic transform.

Modulus arithmetic refers to arithmetic operations in number systems
manipulating the integer remainder after division. TFor example, an
integer i is said to be congruent to another integerj“modulo” k, denoted
by:

i = j{mod k)

if the remainder of the division i/k is the same as the remainder of the
division j/k.

Certainly the size of a key is reduced if
(key)' = key(mod MM) (2.4.2)

where MM is less than key. Thus, we have a candidate for a squeezing
function. By allowing MM to be a variable, a "dynamic transform function”
is available. For identification purposes a mapping algorithm using

this transform is referred to as a "variable modulus-transiorm.!

As new keys are added to the list to be associatively stored, the value
of the divisor (MM) is changed from one value to another as necessary
in order to map all N keys uniquely. A sequence of divisors which will
map all possible combinations of N keys out of M positive integers is
said to "converge." To illustrate the manner in which the argument of



the variable modulus-transform is changed, an example is given in

Figure 2.4.3 which uses a sequence of prime numbers for trial divisors

in storing a particular set of 17 keys, where each key is its own record.
The sequence of divisors used for this particular example where N=17 and
M=99, is shown above a set of columns of residues generated for each input
member until an ambiguity resulted disqualifying that trial divisor. Con-
vergence is indicated in Figure 2.4.3 by a solid line tracing the success-
fully stored keys of the ordered input list. In this example 41 is the
first successful divisor and seven trials were required before it was
found. Suppose it is desired to retrieve key 47. First (key)' is
computed giving 47 mod (41) = 6. From the IA area (not shown) the tag

is found to be 16. Thus the sixteenth key is 47.




Evaluation

To determine an optimum between memory required and storage time required
a study of divisors was made.

The decision as to what value the divisor should be must be made external
to the variable modulus-transform. Once a divisor has been found which
will successfully map a given list of N keys, it need not be changed until
more keys need to be recorded giving a new value of N. The successful
divisor is determined by sequentially trying a set of divisors one at a
time until all N keys can be mapped uniquely. In this sectic

are developed for choosing the first divisor so as to minimize the cost
of the recording operation.

— T+ At o~
i CTritlria

The results are displayed on the next slide (3.1.18),
Note optimum locus implied for first guess. Now that for second guess?
Similarly the expected space (s.) is computed by

Se = 5 MM j‘p(dj) (3.2.8)

where the same upper limit is determined by the number of trials to

get p=l.

The results for several combinations (N,M) are summarized in Figure 3.2.9
as a poly-parameter two-dimensional representation of the expected space,
Ses as a function of the combination (N,M). At each coordinate box
located by (N,M) the value of (s.) is given for each of the sequences

tried. Note the increasing treqd.

Similarly, the expected cost (ce) for various combinatioms (N,M) are
dwsplayed in Figure 3.2.10 for each of the sequences tried. As would

be expected for a”y row (i.e., N), the cost increases with increasing M
for all ways of choosing sequences; and, similarly for any column (i.e.,M),
the cost increases with increasing N. It is significant that no general
advantage is obtaired from either the "prime way" (i.e., the next divisor
is the next prime number) or the "L-way" (i.e., the next divisor is

chosen when L is zero or one), where

L = M-MM-X (3.2.11)

every other integer
p 2 way), shows a
siizht advantage over z sequence of successive int >s. The "skip 1 way"
is & continuous sequence of successors starting wit: N+1. The difference
tetween the "skip 1 way" and the successors is dl*ectly accounted for by
the better cnoice of the first divisor.

as might be expected. TFor larger values of N s
and genera:ing the sequence N+2, N¥&4, <--M (i.e.,

o

(continued)



{
|

For worst case considerations (let us) consider the next slide (3.3.1).

Now consider the question of what problem solving capability does such a
function give?

Compactly stated, it allows a high level language in Information Retrieval
to have a very direct translation. Consequently, .onsiderable saving
in searching time is realized.

48]

To obsexrve some features of the language referred to, let us consider the
next siide {(4.2.3). XNote that hierarchy of operators is allowed. Each
source statement is shoewn with an intermediate output in a Polish string.

The intermediate output is then input to an IR interpreter, as shown in
the next slide. The IR system ocutput is shown at the bottom. The output
format is the same as the input so that a user can return those statements
which will update the system.



Conclusions

The realization of associative memory technigues on conventional digital
computers is demonstrated using only a single search cycle which allows
for computing an address and binary comparison. A class of dynamic
functions which utilize the apriori information available during the
recording operation is evaluated. The flexibility of az trade-off between
program running time and computer memory is illustrated. A comparison

of various associative memory organizations is made by considering appli-
cations to the field of information retrieval.

e feasibility of a real-time informz system i1s demonstrated.
Both the input and output of such z sy d to conform to the

i losed ‘ structure of the syntax
r

allows three types of associative ope RECORD a given record
S5

with a Boolean "OR" expression of asso IRASE a record
from association with each one of 2 Zo es

sion of keys, and
colean expression {any logical

3. RETRIEVE all records associate B
parenthetical expressions) of

el
combination of "AND", U“OR", "AND XNOTY, an
keys.



Acknowledgement :

This research was supported by the National Aeronautics and

Space Administration, Research Grant NsF-298 to the University

of Kansas.

Reference:

"Associative Memory Realization by
Dynamic Transformation Functions"

Ph.D. Thesis by Wilburn O. Clark
University of Kansas 1964




N

DYNAMIC
TRANSFORMS

BINARY-SPLITTING

SEQUENTIAL
rd /

T

WORST CASE RETRIEVAL TIME



Example of 5 records to be recorded associatively
which are designated by subscripted (A's) each followed
by the keys (K's) with which it is associated.
the 5 groups of adjacent boxes represent collections of

information which may be assumed to be available in the

application concerned.

Figure 1.2.1

Ay |Ky | K3 | K5 K7 | Kq
g |k | X35 | Ky

Ay |%5 |k, | X5 |X

Ay | g

Ay | XKy | K3 | Ko

Each of



Sequential 1ist of Distributed cells from avail-
cells containing able storage with a record
keys and head links and a link to the next cell

L
(1] In /
A
9
“ - L Ag | Ix
2 ) - = -
A ‘ L5 | L7
X L 1
p) 4 \ //
A 1L A
Ky ] Ing i s 2
X Ag | Iy [Al
5] o
A ¥
7
Ke | Iys A
/ R —e
| K71 Tna A7 |I1s e
T {716
Kg| Ing /V-T Ay

K

49
9] s //rﬂ'z

The simple list implementation shows reorganizetion of
the example in Figure 1.2.1. Each "L;" is a 1link designating
the RAM location of the next cell. Diagrammatically a
curved zrrow points to the next cell in the chain as desige~
nated by the link in the preceding cell. ZEFach chain of
cells is Terminated by a blank label.

Figure 1.2.2

Simple List Implementation



Divisor

kKey | 17 19 23 29 31 37 &
1 1

2 2

4 4

9 9

14 | 1

15 | 15]

16 | 16

18 1 18

20 1 |/

23 0 23

26 3 26

27 27

30 1y 3ol

38 7, i/ =8
; AR
47 6
99 17

Figure 2.4.3

Prime Divisors Sequence Used




On

W .
0ce 082 Ofe 00¢ 09T 0ctT 08 O%
; .

—
e — W U0 punog Jomorm

S SonTep J91JBIQ

wunugadp JO €noor

1800 JUBASUO) JO SINOLUOD .

QI T*¢ oandyyg

OT

Oce




paaTnbeoy Aaowoll JOo enfeyp palroedxy

6*e ¢ vandTy

6T X} LT 9T ST #T ¢T AN IT 0T
[ 0 i i
'9¢ 11 oLzih . , !
6 AL O AL
¢eteiITl TC ¢TI
29 eIl LG°¢iIl Lep Lewy yo Teadzg A
g9erl T9°etl £Lepy g diyg Jo Teadui AT
£ep T diMg Jo teadxy 1IIT -
€8°9:A LG 9iA SIARAN Koy ewjad Jo Teadxy 11
OT‘9'AT 60°9!AT CGTIAT sJosseoong Jo Teadxyr  ¢f
G H'III G #IIII 0R°T:ILL sToqufg
CeGiIT  TETGRIX 90° eIl
OF "Wt T HEtHEI 0¢*eil _
L9°6:h  6G°QiA
29°LIAT %G LAY
92°*9¢II1 Te 9 lll
L9°LYIT C9tLrII
T6°G:T  #8°GeI
LESTTA 06°6% A Q0 Qi A
LE*6 AT G6° QAT G gLl
@Rl III G9*LYINT 0G°* L 11T
c6'6 11 IRANTIEI 6c°Q+I1
19 1 Ge* LT ARUAN




[ON)
L

180) JO enTep pogoodyy

0T*2°¢ sandiy

6T 8T LT 9T ST 7T ¢T AN T 0T
1 e g o in ! i i
0G°GIAT R GLAY
L9 #tTT1 9¢ " III
cL 4L 66 1T
9z il AR Ley Lewy Jo teadyss  tp
: Lepy z diyg Jo Teadiy) AT _
QT A 6°CT:A 09°0T: A Kep T Ti¥g Jo Teadmy 11T
0°0OT: AT QC 6LAT QT 6! AT Lepy owtag 10 Hm>@xm T
0°6: 11 6 QY ITI #9°QI1I SI08S000NY IO TeAGKT T
CUTT:IT  T°TT:IT LLPOTHIT spoquig
SIANCN I SL°OT: I 6Q°6: 1
2 G A G*0gtA
QCTIAT H°CLIAT
SRIVITIT Q¢ TIY
6°GT IY H°GTII
2 AT I L*9T 1
0°0¢tA QT A 0'QTA
G002t AT 6°LTAT LHTYAL
L*eci 111 02 II. 6°QLIIIT
0@t IT 6°¢ci Il 0*0c2i Il
I AR RAR Gyl IARAEINN

-w‘\

0



62

eTqeddsuun oq 03 ssnyeA 81qYSsod
T°¢°¢ eandig

*9AT18F0U~-UOU ©q 38NW 8,I PuUB 8,® TIV

*‘W> pu® 30UTISTP °q TIB® 9snu sfe)

*2% Tenbe asnm LeoY yows MOTeq sJequnu TTY
_ $89UTBIISUOD ,

*sdiysuoyqered ,eI80 4,U0Op, 83BOTPUT geoeds YueTq oYy

o

65tz 1STTetCTe - LasfTeor|  la+Teor] ot
g59x1 zscle‘llg 91+Lleg 9a+C Leg 6
1551 259Te¢be 91+08g mnmmﬂww 8
SZEESTRE Vz+0u) Yz+lay Z
GSta ¢S%u¢Se ¢1+98g L 1+78g 9
#>Ca ¢Shau‘te C1+78g CI+18G 4
Sl #me. : T1+%ey ﬂMHdd# e
mnmwwﬁmmmo % Koy ¢ Koy z Loy T Lo} JI0STATQ

*MOT®q USATZ ST SJOSTATP TBTIT JO
sousnbas oUy uweys ‘(6T°C) uOTjeBUTqUOO oY} oABY oM esoddng *T=(s)d
J0J popaou (*qI) JOSTATP 4SBT 9S9[TBWS ayy Jujjonpesp Jo seTduexy



’ . FIGURE 44247
- . INPUT STATEMENTS WITH POLISH OUTPUT UF TRANGLATUHX

X

O m
rmmmnN
M A3 w N

- < =H~D

(REF37+ROBERTLEDLEY)

.
MmO .o

Ry

(REF37+PROGRAMMING s ANDsUSINGeDIGI T+ COMPUTERS |

I S 7 R
— T Y
< VWM

~ O

=0
P
v

kS
=

AND

.
LUSING

.
DIGIT
UTERS

T ( BOOKsROBERTsDIGITsMEMORY)

RET (As (ROBERT. DIGITAL COMPUTERS))

MMING
RET (KEYs ITEMsTERMSDIGIT«DISCRIPTOR)
RETR ‘
KEy
ITEM
TERM
DIGIT
S
IPTOR

*

80



C INPUT DATA==leEe~=-QUTPUT OF TRANSLATCR
RECH

REF3T

OnERT

EDLFY

* -

RECO
RFEF37
MMING

AND

b
USING
°
DIGIT
*
UTERS

b

RETR
ROOK
ORERT
DIGIT
b
EMORY

9

QUTPUT OF SIMULATOR
EC (REF37, B0O0K)
EC (REF37, BOOK)
EC { s BOOK)

90



